ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
J. H. Lee, Y. H. Kang, S. C. Hwang, H. S. Lee, E. H. Kim, S. W. Park
Nuclear Technology | Volume 162 | Number 1 | April 2008 | Pages 107-116
Technical Paper | Reprocessing | doi.org/10.13182/NT08-A3936
Articles are hosted by Taylor and Francis Online.
Numerical assessment of a high-throughput electrorefining concept for a spent metallic fuel was carried out by using a commercial computational fluid dynamics code, CFX. An electrorefiner concept equipped with a graphite cathode bundle was designed to recover a high-purity uranium product continuously without a noble metal contamination. The performance of the process for the decontamination of a noble metal in a uranium product was evaluated as a function of the process parameters, such as the rotation speeds of the stirrer and the anode basket. The effects of the void fraction of the anode basket cavity and the morphology of the uranium dendrite on the molten-salt flow and collection behavior were also evaluated with the calculated results.