ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Natalie Cannon is passionate about nuclear policy
Some people are born leaders, and some people make themselves leaders. Take Natalie Cannon, a fourth-year doctoral candidate in the Department of Nuclear and Radiological Engineering and Medical Physics at the Georgia Institute of Technology. She has been driven to succeed since she was a teenager in Southern California, when she was inspired by NASA’s Mars Exploration Program.
J. H. Lee, Y. H. Kang, S. C. Hwang, H. S. Lee, E. H. Kim, S. W. Park
Nuclear Technology | Volume 162 | Number 1 | April 2008 | Pages 107-116
Technical Paper | Reprocessing | doi.org/10.13182/NT08-A3936
Articles are hosted by Taylor and Francis Online.
Numerical assessment of a high-throughput electrorefining concept for a spent metallic fuel was carried out by using a commercial computational fluid dynamics code, CFX. An electrorefiner concept equipped with a graphite cathode bundle was designed to recover a high-purity uranium product continuously without a noble metal contamination. The performance of the process for the decontamination of a noble metal in a uranium product was evaluated as a function of the process parameters, such as the rotation speeds of the stirrer and the anode basket. The effects of the void fraction of the anode basket cavity and the morphology of the uranium dendrite on the molten-salt flow and collection behavior were also evaluated with the calculated results.