ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
Meng Yue, Lap-Yan Cheng, Robert A. Bari
Nuclear Technology | Volume 162 | Number 1 | April 2008 | Pages 26-44
Technical Paper | Reactor Safety | doi.org/10.13182/NT08-A3931
Articles are hosted by Taylor and Francis Online.
A Markov model approach is developed for the evaluation of proliferation resistance (PR) of nuclear energy systems. The focus of this study is to create a high-fidelity probabilistic assessment model that better represents nuclear energy systems. Both extrinsic and intrinsic barriers associated with the energy systems are considered. Modeling uncertainty and safeguards false alarms, composite safeguards approaches, concealment, and human performance are particularly discussed in detail and incorporated in the Markov model. These features are anticipated to have significant impacts on PR assessment. The Markov model approach is adapted to a hypothetical example sodium fast reactor (ESFR) system using physically meaningful parameters that can be obtained from physical processes. Development of metrics for six PR measures is discussed. Computation of the PR measures using the Markov model of the ESFR system is illustrated. The results obtained in this study demonstrate applicability and effectiveness of the Markov model approach in the PR assessment.