ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
Ser Gi Hong, Sang Ji Kim, Yeong Il Kim
Nuclear Technology | Volume 162 | Number 1 | April 2008 | Pages 1-25
Technical Paper | Reactor Safety | doi.org/10.13182/NT162-1-25
Articles are hosted by Taylor and Francis Online.
Annular sodium-cooled fast reactor cores [600 MW(electric)] with low sodium void worth are developed for burning transuranic nuclides discharged from light water reactors. The several core design variants are developed by changing the core configuration, the core height, the fuel assembly design and type of nonfuel assemblies in the core, and their core performance parameters including safety-related reactivity coefficients are analyzed and inter-compared. The study focuses on the core neutronic parameters without going into the detailed safety and material compatibility studies. The study shows that the several cores of the annular type can be designed to have low sodium void worth, high transmutation capability, and all the negative temperature reactivity coefficients except for the positive one related to coolant expansion that can be compensated for by the reactivity coefficients by the fuel axial expansion and the fuel Doppler effects under the off-normal events, which increase temperatures. Of the cores considered, the use of a larger central control region and fuel assemblies with high coolant flow area in the core boundaries is found to be the most effective and simple way to achieve low sodium void worth and high transmutation capability.