ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
Ser Gi Hong, Sang Ji Kim, Yeong Il Kim
Nuclear Technology | Volume 162 | Number 1 | April 2008 | Pages 1-25
Technical Paper | Reactor Safety | doi.org/10.13182/NT162-1-25
Articles are hosted by Taylor and Francis Online.
Annular sodium-cooled fast reactor cores [600 MW(electric)] with low sodium void worth are developed for burning transuranic nuclides discharged from light water reactors. The several core design variants are developed by changing the core configuration, the core height, the fuel assembly design and type of nonfuel assemblies in the core, and their core performance parameters including safety-related reactivity coefficients are analyzed and inter-compared. The study focuses on the core neutronic parameters without going into the detailed safety and material compatibility studies. The study shows that the several cores of the annular type can be designed to have low sodium void worth, high transmutation capability, and all the negative temperature reactivity coefficients except for the positive one related to coolant expansion that can be compensated for by the reactivity coefficients by the fuel axial expansion and the fuel Doppler effects under the off-normal events, which increase temperatures. Of the cores considered, the use of a larger central control region and fuel assemblies with high coolant flow area in the core boundaries is found to be the most effective and simple way to achieve low sodium void worth and high transmutation capability.