ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
J. C. Farmer, J.-S. Choi, C.-K. Saw, R. H. Rebak, S. D. Day, T. Lian, P. D. Hailey, J. H. Payer, D. J. Branagan, L. F. Aprigliano
Nuclear Technology | Volume 161 | Number 2 | February 2008 | Pages 169-189
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT08-A3921
Articles are hosted by Taylor and Francis Online.
An iron-based amorphous metal with good corrosion resistance and a high absorption cross section for thermal neutrons has been developed and is reported here. This amorphous alloy has the approximate formula Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4 and is known as SAM2X5. Chromium, molybdenum, and tungsten were added to provide corrosion resistance, while boron was added to promote glass formation and the absorption of thermal neutrons. Since this amorphous metal has a higher boron content than conventional borated stainless steels, it provides the nuclear engineer with design advantages for criticality control structures with enhanced safety. While melt-spun ribbons with limited practical applications were initially produced, large quantities (several tons) of gas-atomized powder have now been produced on an industrial scale, and applied as thermal-spray coatings on prototypical half-scale spent-nuclear-fuel containers and neutron-absorbing baskets. These prototypes and other SAM2X5 samples have undergone a variety of corrosion testing, including both salt-fog and long-term immersion testing. Modes and rates of corrosion have been determined in various relevant environments and are reported here. While these coatings have less corrosion resistance than melt-spun ribbons and optimized coatings produced in the laboratory, substantial corrosion resistance has been achieved.