ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Jiyun Zhao, Pradip Saha, Mujid S. Kazimi
Nuclear Technology | Volume 161 | Number 2 | February 2008 | Pages 108-123
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT08-A3917
Articles are hosted by Taylor and Francis Online.
Using a three-region supercritical water flow model, the core-wide in-phase stability of the U.S. reference supercritical water-cooled reactor (SCWR) design is investigated. The reactor core is simulated as three channels according to the radial power distribution. A method based on modes (reactivity modes) expansion of neutronic kinetic equations is applied. A constant pressure drop boundary condition between the feedwater pump and the turbine control valve is assumed. Cases with and without water rods heating are studied.It is found that the stability of the U.S. reference SCWR design is sensitive to the flow restrictions in the hot fluid or the steam line. As long as the restriction in the steam line is small, the design will be stable. A pressure loss coefficient of 0.25 is assumed for the exit valve on the steam line in this analysis. With this value, the SCWR is stable with a large margin. It is concluded that the presence of water rods heating will reduce the stability margin and increase the flow rate sensitivity while maintaining the power sensitivity level.The decay ratios for the three density wave oscillation modes, i.e., single hot channel, coupled neutronic out-of-phase and in-phase, are compared at steady-state conditions. It is found that the single hot channel oscillation mode is the most limiting one in the absence of the water rods heating, while the in-phase oscillation mode is most limiting in the presence of water rods heating.