ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
A. S. Choi, R. A. Pierce, T. B. Edwards, T. B. Calloway
Nuclear Technology | Volume 160 | Number 3 | December 2007 | Pages 361-373
Technical Note | Radioisotopes | doi.org/10.13182/NT07-A3907
Articles are hosted by Taylor and Francis Online.
Both experimental and process simulation studies were performed to develop physical property models of the concentrated cesium ion-exchange eluate solutions in one of the Hanford Waste Treatment Plant evaporators. The physical properties of interest included the bulk solubility, density, viscosity, and heat capacity of the evaporator bottoms, and the proposed model of each response was a linear mixture model containing 12 coefficients. A unique feature of this work is that the values of these coefficients were determined by the regression of the "virtual" experimental data, which were not measured but were calculated using a computer process model that simulated the semibatch evaporation of cesium eluate solutions. To improve the accuracy of calculated virtual experimental data and the resulting physical property models, a series of benchscale evaporation tests was also conducted to provide the necessary experimental data for the development of a multielectrolyte thermodynamic database on which the computer process model was built. Specifically, the solubility and other physical properties of selected binary, ternary, and higher-order systems were measured to support the optimization of a sexenary database for the Na-K-Cs-Al-HNO3-H2O system. As the input to the virtual experimental runs, a matrix of cesium eluate simulants was designed within the bounding concentrations of the major analytes identified in radioactive samples. The computer process model was then run in conjunction with the sexenary thermodynamic database to calculate the physical properties of each matrix solution concentrated to the target end points of 80 and 100% saturation. The calculated physical properties were analyzed statistically and fitted into the 12-coefficient mixture function of temperature and the concentrations of major analytes in the unevaporated eluate. Over the concentration and temperature ranges considered, the resulting empirical physical property models were found to correlate the computer-generated data well without significant bias.