ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
MOU signed for Solo microreactor
Paragon Energy Solutions has signed a memorandum of understanding with Terra Innovatum, a developer of micro-modular nuclear reactors, to support the design and integration of instrumentation and control systems for Terra’s Solo micro-modular reactor. Paragon is a provider of safety-related I&C systems for the nuclear energy community,
M. T. Farmer, C. Gerardi, N. Bremer, S. Basu
Nuclear Technology | Volume 196 | Number 3 | December 2016 | Pages 461-474
Technical Paper | doi.org/10.13182/NT16-43
Articles are hosted by Taylor and Francis Online.
The reactor accidents at Fukushima Daiichi have rekindled interest in late-phase severe accident behavior involving reactor pressure vessel breach and discharge of molten core melt into the containment. Two technical issues of interest in this area are core-concrete interaction and the extent to which the core debris may be quenched and rendered coolable by top flooding. The Organisation for Economic Co-operation and Development–sponsored Melt Coolability and Concrete Interaction programs at Argonne National Laboratory included the conduct of large-scale reactor material experiments and associated analysis with the objectives of resolving the ex-vessel debris coolability issue and addressing remaining uncertainties related to long-term two-dimensional molten core–concrete interactions under both wet and dry cavity conditions. These tests provided a broad database to support accident management planning as well as the development and validation of models and codes that can be used to extrapolate the experimental results to plant conditions. This paper provides a high-level overview of the key experimental results obtained during the program. A discussion is also provided of the technical gaps that remain in this area, several of which have arisen based on the sequence of events and operator actions during Fukushima.