ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
M. T. Farmer, C. Gerardi, N. Bremer, S. Basu
Nuclear Technology | Volume 196 | Number 3 | December 2016 | Pages 461-474
Technical Paper | doi.org/10.13182/NT16-43
Articles are hosted by Taylor and Francis Online.
The reactor accidents at Fukushima Daiichi have rekindled interest in late-phase severe accident behavior involving reactor pressure vessel breach and discharge of molten core melt into the containment. Two technical issues of interest in this area are core-concrete interaction and the extent to which the core debris may be quenched and rendered coolable by top flooding. The Organisation for Economic Co-operation and Development–sponsored Melt Coolability and Concrete Interaction programs at Argonne National Laboratory included the conduct of large-scale reactor material experiments and associated analysis with the objectives of resolving the ex-vessel debris coolability issue and addressing remaining uncertainties related to long-term two-dimensional molten core–concrete interactions under both wet and dry cavity conditions. These tests provided a broad database to support accident management planning as well as the development and validation of models and codes that can be used to extrapolate the experimental results to plant conditions. This paper provides a high-level overview of the key experimental results obtained during the program. A discussion is also provided of the technical gaps that remain in this area, several of which have arisen based on the sequence of events and operator actions during Fukushima.