ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Miles Greiner, Kishore Kumar Gangadharan, Mithun Gudipati
Nuclear Technology | Volume 160 | Number 3 | December 2007 | Pages 325-336
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT07-A3903
Articles are hosted by Taylor and Francis Online.
Two-dimensional finite element thermal simulations of large rail casks designed to transport spent nuclear fuel assemblies were performed for normal conditions. Two different effective thermal conductivity models, developed by other investigators, were implemented within the basket openings that support the fuel assemblies. The effective thermal conductivity models affect the peak cladding temperature directly by influencing the temperature difference between the hottest cladding at the cask center and the walls that surround it. It also affects it indirectly by influencing the center basket wall temperature. The fuel assembly heat generation rates that cause the peak cladding temperature to reach the allowed limit were determined for both effective thermal conductivity models. At those generation rates the basket wall temperatures in the periphery of the package were highly nonuniform. The basket wall temperatures determined in this work will be used in future studies to develop improved thermal models of fuel assemblies.