ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Manfred Fischer, Sevostian V. Bechta, Vladimir V. Bezlepkin, Ryoichi Hamazaki, Alexei Miassoedov
Nuclear Technology | Volume 196 | Number 3 | December 2016 | Pages 524-537
Technical Paper | doi.org/10.13182/NT16-19
Articles are hosted by Taylor and Francis Online.
In the event of a severe accident in a nuclear power plant with the core melting, the stabilization of the molten corium is an important mitigation issue, as it can avoid late containment failure caused by basemat penetration, overpressure, or severe damage to internal structures. The related failure modes may result in significant long-term radiological consequences and related high costs.
Because of this, the licensing frameworks of several countries now include a requirement to implement mitigative core melt stabilization measures. This applies not only to new builds but also to existing light water reactors.
The paper gives an overview of the ex-vessel core melt stabilization strategies developed during the last decades. These strategies are based on a variety of physical principles, like melt fragmentation in a deep water pool or during the molten core–concrete interaction with top flooding, water injection from the bottom (COMET), and retention in an outside-cooled crucible structure.
This overview covers the physical background and functional principles of these concepts, as well as their validation status and, if applicable, the remaining open issues and research and development needs. For the concepts based on melt retention inside a cooled crucible that have reached sufficient maturity to be implemented in current Generation III+ designs, like the VVER-1000/1200 and the European Pressurized Water Reactor, more detailed descriptions are provided, which include key aspects of the related technical realization.
The paper is compiled using contributions from the main developers of the individual concepts.