ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Churl Yoon, Joo Hwan Park
Nuclear Technology | Volume 160 | Number 3 | December 2007 | Pages 314-324
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT07-A3902
Articles are hosted by Taylor and Francis Online.
The fluid flows going through the Canada Deuterium Uranium (CANDU) moderator inlet diffuser assembly consist of a pipe flow, a curved pipe flow, and an impinging jet. For predicting the velocity profile at the diffuser outlet faces, a computational fluid dynamics (CFD) analysis has been performed to simulate the internal flow in the diffuser assembly. For the validation of a CFD code, some experimental data were chosen for each flow, and various turbulence models were examined. The shear stress transport turbulence model was proven to be the most appropriate for a prediction of the impinging jets and to give better predictions for a curved pipe flow compared to the standard k-[curly epsilon] turbulence model. As a result of the investigation, detailed velocity profiles and turbulent parameters at the real diffuser outlets were obtained, which can be applied as an inlet boundary condition for the CANDU moderator analysis.