ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
ANS announces 2025 Presidential Citations
One of the privileges of being president of the American Nuclear Society is awarding Presidential Citations to individuals who have demonstrated outstanding effort in some manner for the benefit of ANS or the nuclear community at large. Citations are conferred twice each year, at the Annual and Winter Meetings.
ANS President Lisa Marshall has named this season’s recipients, who will receive recognition at the upcoming Annual Conference in Chicago during the Special Session on Tuesday, June 17.
M. T. Farmer, M. Corradini, J. Rempe, R. Reister, D. Peko
Nuclear Technology | Volume 196 | Number 2 | November 2016 | Pages 141-148
Technical Paper | doi.org/10.13182/NT16-42
Articles are hosted by Taylor and Francis Online.
The U.S. Department of Energy (DOE) has played a major role in the U.S. response to the events at Fukushima Daiichi. During the first several weeks following the accident, U.S. assistance efforts were guided by results from a significant and diverse set of analyses. In the months that followed, a coordinated analysis activity aimed at gaining a more thorough understanding of the accident sequence was completed using laboratory-developed, system-level best-estimate accident analysis codes, while a parallel analysis was conducted by U.S. industry. A comparison of predictions for Unit 1 from these two studies indicated significant differences between MAAP and MELCOR results for key plant parameters, such as in-core hydrogen production. On that basis, a crosswalk was completed to determine the key modeling variations that led to these differences. In parallel with these activities, it became clear that there was a need to perform a technology gap evaluation on accident-tolerant components and severe accident analysis methodologies with the goal of identifying any data and/or knowledge gaps that may exist given the current state of light water reactor (LWR) severe accident research and augmented by insights from Fukushima. In addition, there is growing international recognition that data from Fukushima could significantly reduce uncertainties related to severe accident progression, particularly for boiling water reactors. On these bases, a group of U.S. experts in LWR safety and plant operations was convened by the DOE Office of Nuclear Energy (DOE-NE) to complete technology gap analysis and Fukushima forensics data needs identification activities. The results from these activities were used as the basis for refining DOE-NE’s severe accident research and development (R&D) plan. This paper provides a high-level review of DOE-sponsored R&D efforts in these areas, including planned activities on accident-tolerant components and accident analysis methods.