ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Seong-Su Jeon, Soon-Joon Hong, Hyoung-Kyu Cho, Goon-Cherl Park
Nuclear Technology | Volume 196 | Number 2 | November 2016 | Pages 303-318
Technical Paper | doi.org/10.13182/NT16-22
Articles are hosted by Taylor and Francis Online.
A horizontal U-shaped heat exchanger (HX) submerged in a pool is under development as a piece of key equipment for a passive safety system in a nuclear power plant (NPP). For the successful design of the HX and the safety analysis of the NPP, reliable prediction of the heat transfer performance of the HX is important. At present, the design and the safety analysis of the passive safety systems are performed mainly using best-estimate thermal-hydraulic analysis codes such as RELAP5 and MARS. However, those codes do not have suitable models for both condensation heat transfer in the horizontal tube and natural convective and nucleate boiling heat transfer on the horizontal tube, both of which ultimately determine the heat transfer performance of the HX. This study developed a heat transfer model package for the horizontal U-shaped HX submerged in a pool by improving the horizontal in-tube condensation model and developing the out-tube natural convective and nucleate boiling model. From the validation results, the proposed model provides an improved prediction of HX performance (condensation, natural convection and nucleate boiling, and heat removal rate of the HX) compared to the default model in MARS.