ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
L.-Y. Cheng, J. S. Baek, A. Cuadra, A. Aronson, D. Diamond, P. Yarsky
Nuclear Technology | Volume 196 | Number 2 | November 2016 | Pages 238-247
Technical Paper | doi.org/10.13182/NT16-29
Articles are hosted by Taylor and Francis Online.
A TRACE/PARCS model has been developed to analyze anticipated transient without scram (ATWS) events for a boiling water reactor (BWR) operating in the maximum extended load line limit analysis-plus (MELLLA+) expanded operating domain. The MELLLA+ domain expands the allowable operation in the power/flow map of a BWR to low flow rates at high-power conditions. Such operation exacerbates the likelihood of large-amplitude power/flow oscillations during certain ATWS scenarios. The analysis shows that large-amplitude power/flow oscillations, both core-wide and out-of-phase, arise following the establishment of natural-circulation flow in the reactor pressure vessel after the trip of the recirculation pumps and an increase in core inlet subcooling. The analysis also indicates a mechanism by which the fuel may experience heatup that could result in localized fuel damage. TRACE predicts that heatup will occur when the cladding surface temperature exceeds the minimum stable film boiling temperature after periodic cycles of dryout and rewet, and the fuel becomes locked into a boiling-film regime. Further, the analysis demonstrates the effectiveness of the simulated manual operator actions to suppress the instability.