ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
ANS announces 2025 Presidential Citations
One of the privileges of being president of the American Nuclear Society is awarding Presidential Citations to individuals who have demonstrated outstanding effort in some manner for the benefit of ANS or the nuclear community at large. Citations are conferred twice each year, at the Annual and Winter Meetings.
ANS President Lisa Marshall has named this season’s recipients, who will receive recognition at the upcoming Annual Conference in Chicago during the Special Session on Tuesday, June 17.
Xi Huang, Xu Cheng, Walter Klein-Heßling
Nuclear Technology | Volume 196 | Number 2 | November 2016 | Pages 248-259
Technical Paper | doi.org/10.13182/NT16-67
Articles are hosted by Taylor and Francis Online.
Falling water films have been employed for passive containment cooling in several Generation III pressurized water reactor designs. In this paper, the lumped-parameter (L-P) containment code system COCOSYS with an advanced water film model is applied to evaluate the performance of a passive containment cooling system (PCCS) during accidents. Based on the recent work and with further modification, an integrated water film model is developed. The new model considers different flow regimes of a liquid film as it flows downward and is being evaporated. The integrated model has been adapted to the L-P code and then implemented into COCOSYS. The new model enables the containment code to capture previously neglected phenomena, including the behavior of film breakup due to the reduction in mass; the formation of rivulets; the change in coverage rate and the development of rivulets; the change of velocity distribution as well as film thickness by considering the interfacial shear stress created by countercurrent air on the film surface; the hysteresis of rivulets, i.e., the process of advancing or retreating, involving changes in contact angles; and the influence of waves on the film surface.
The new model is validated against existing test results and experimental observations in the authors’ recent work and is further modified in this paper taking into account the influence of waves and the processes of rivulet hysteresis. The model is then assessed based on test nodalization, and the expected phenomena are observed. Afterward, the new model is applied to evaluate the performance of PCCS film cooling employed in the AP1000 containment.
It is concluded that the original film model tends to underestimate the pressure loads due to the absence of film breakup, rivulet behavior, and shear stress models. The coverage rate, as a new factor captured in the new model, limits the evaporation rate and thus restricts the cooling efficiency of the falling film. The sensitivity analysis reveals that the contact angle and hysteresis phenomenon, which were not previously considered in the code, play significant roles in PCCS film cooling. The advancing contact angle of the rivulets is a decisive factor for the peak pressure, while the retreating contact angle is influential in the later phase of cooling. It can be inferred from the study that the ideal situation for PCCS cooling is that in which the water film is approaching complete dryout at the bottom of the containment. The newly developed liquid film model helps improve the accuracy and reliability of the simulation results.