ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Ernst-Arndt Reinecke, Stephan Kelm, Paul-Martin Steffen, Michael Klauck,Hans-Josef Allelein
Nuclear Technology | Volume 196 | Number 2 | November 2016 | Pages 355-366
Technical Paper | doi.org/10.13182/NT16-7
Articles are hosted by Taylor and Francis Online.
In order to reduce the accumulation of hydrogen and thus to mitigate the risk of combustion, many countries have installed passive autocatalytic recombiners (PARs) within light water reactor containments. The severe hydrogen combustion events of the recent Fukushima Daiichi accident are likely to incentivize an increased demand in upgrading nuclear power plants with PARs. Numerical simulation is an important tool for assessing PAR operation during a severe accident in terms of efficiency and proper installation. Advanced numerical PAR models are required for the challenging boundary conditions during a severe accident, for example, low oxygen amount, high steam amount, and presence of carbon monoxide. The REKO-DIREKT code has been developed in order to provide a PAR model capable of simulating complex PAR phenomena and at the same time being suitable for implementation in thermal-hydraulic codes.
The development of REKO-DIREKT was supported by small-scale experiments performed at Forschungszentrum Juelich in the REKO facilities. These facilities allow the study of PAR-related single phenomena such as reaction kinetics under different conditions including variation of steam, oxygen, and carbon monoxide (REKO-3) and the chimney effect (REKO-4). Recently, the code has been validated against full-scale experiments performed in the Thermal-Hydraulics, Hydrogen, Aerosols, Iodine (THAI) facility at Eschborn, Germany, in the framework of the Organisation for Economic Co-operation and Development/Nuclear Energy Agency THAI project. By this, the code has proven its applicability for different PAR designs and for a broad range of boundary conditions (pressure of up to 3 bars, steam amount up to 60 vol %, low-oxygen conditions). REKO-DIREKT has been successfully implemented in the commercial computational fluid dynamics code ANSYS-CFX as well as in the LP code COCOSYS [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS), Germany].