ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Ernst-Arndt Reinecke, Ahmed Bentaïb, Jürgen Dornseiffer, Daniel Heidelberg, Franck Morfin, Pascal Zavaleta, Hans-Josef Allelein
Nuclear Technology | Volume 196 | Number 2 | November 2016 | Pages 367-376
Technical Paper | doi.org/10.13182/NT16-4
Articles are hosted by Taylor and Francis Online.
Passive autocatalytic recombiners (PARs) have been installed inside light water reactor containments in many countries to remove hydrogen and, thus, to mitigate the combustion risk during a severe accident (SA). Due to the challenging SA boundary conditions, PARs are exposed to several deactivation risks during operation, which may cause a reduction of the hydrogen removal capacity. Such a deactivation may occur through different mechanisms and could in principle affect the start-up behavior up to the full loss of catalytic activity. To assess the interaction of PARs with the products of cable fires, a set of PAR catalyst samples has been introduced to the atmosphere of cable fire tests performed at Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France. The subsequent surface analyses performed at Forschungszentrum Jülich (Germany) reveal a significant amount of carbon, chlorine (a constituent of polyvinyl chloride), zinc, and antimony (a flame retardant) on all catalyst samples compared to reference samples. The subsequent performance tests confirm that all catalyst sheets suffer a significant start-up delay of between 17 and 45 min compared to the reference samples. However, after burning off the soot deposition, the catalyst samples reach full conversion capacity and show immediate start-up behavior in a subsequent test. The present results clearly demonstrate the adverse effect of cable fire products on the efficiency of hydrogen conversion in a PAR. To further understand and quantify the impact of cable fire products and to assess their relevance for SA scenarios, further experimental as well as theoretical investigations are required. In particular, the combined influence of cable fire products and humidity, which has intentionally been omitted in the present study, should be investigated in the future due to the possible corrosive impact on the catalyst as well as the influence of humidity on the nature of the soot deposition.