ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
S. Yeom, J. Eoh, J. Hong, J.-Y. Jeong
Nuclear Technology | Volume 196 | Number 2 | November 2016 | Pages 338-345
Technical Paper | doi.org/10.13182/NT16-30
Articles are hosted by Taylor and Francis Online.
The Sodium Test Loop for Safety Simulation and Assessment (STELLA) program for demonstration of decay heat removal performance of the Prototype Generation-IV Sodium-cooled Fast Reactor (PGSFR) is in progress at Korea Atomic Energy Research Institute. As the first phase of the program, the STELLA-1 facility has been constructed, and separate-effect tests for the sodium heat exchangers of the safety-grade passive decay heat removal system (PDHRS) have been conducted. A natural-draft sodium-to-air heat exchanger, one of the key heat exchangers of PDHRS, was tested for the performance demonstration and the design code verification and validation. Twenty-nine cases of experiments were conducted with 13 different test conditions for the selected operating and design conditions of PGSFR. Heat transfer rates were experimentally estimated based on the measured inlet/outlet temperatures and flow rates of both the shell side and the tube side. The experimentally obtained heat transfer rates were compared with the values calculated from the design code, which showed good agreement within a 12.6% error range. Finally, the average Nusselt number was obtained from the experimental results considering the convection mode.