ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
Brian D. Hehr, Ayman I. Hawari, Victor H. Gillette
Nuclear Technology | Volume 160 | Number 2 | November 2007 | Pages 251-256
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT07-A3897
Articles are hosted by Taylor and Francis Online.
Graphite, a key structural and moderator material in the proposed Generation IV roadmap, is expected to experience irradiation at temperatures up to 1800 K. In this study, a molecular dynamics (MD) code is developed for the purpose of performing atomistic simulations of high-temperature graphite. The MD computations are benchmarked against thermal expansion and mean-squared displacement data, and modifications to the potential energy function are devised as needed to fit experimental measurements. Graphite-specific alterations include a plane-by-plane center-of-mass velocity correction, anisotropy in the potential energy cutoff function, and temperature-dependent parameterization of the interatomic potential. The refined MD model is then employed to investigate the threshold displacement energy at temperatures of 300 and 1800 K. It was found that the threshold displacement energy depends strongly on the knock-on direction, yet the angle-averaged threshold energy exhibits relatively little variation with temperature.