ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
Chung-Kyun Park, Min-Hoon Baik, Yong-Kwon Koh
Nuclear Technology | Volume 196 | Number 1 | October 2016 | Pages 121-129
Technical Paper | doi.org/10.13182/NT15-148
Articles are hosted by Taylor and Francis Online.
Through-diffusion experiments of some sorbing nuclides onto granodiorite have been carried out to understand their diffusion and sorption characteristics. A newly designed experimental setup with compacted structure and dimensions was used for the through-diffusion process. The nuclides used in the experiment were tritiated water (HTO), Sr, Cs, Ni, Nb, and Am. The diffused nuclides were sampled at certain periods of time to estimate the diffusivities. After the diffusion experiment was carried out for 1.5 years, the rock media were recovered. In addition, a sequential chemical extraction was conducted to estimate the sorption types of the nuclides for the recovered rock disks. The relationship between diffusion and sorption was investigated from the viewpoint of sorption reversibility. The measured diffusivity was compared to the other experimental results.