ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
K. Urso, K. Sridharan, B. J. Jaques, G. Alanko, D. P. Butt, M. Meyer, P. Xu, B. Tyburska-Püschel
Nuclear Technology | Volume 196 | Number 1 | October 2016 | Pages 100-110
Technical Paper | doi.org/10.13182/NT15-155
Articles are hosted by Taylor and Francis Online.
The corrosion resistance of cerium silicide, a surrogate of uranium silicide, is investigated to gain insight into the reaction of uranium silicide with water. As-received and proton-irradiated Ce3Si2, CeSi2, and CeSi1.x monolithic pellets are subjected to corrosion tests in water at 300°C and 9 MPa for up to 48 h. Results show that an oxide layer composed of Ce4.67 (SiO4)3O forms on the surface of all samples, and it grows thicker with extended exposure times. Irradiated samples corrode to a greater extent than their unirradiated counterparts, which is mainly a result of the existing post-irradiation cerium oxide and the presence of ion-induced defects. Most of the Ce3Si2 samples crack (as-received) or fracture (ion-irradiated) during testing, which is due to the brittleness of the samples and oxide erosion/spallation that occur during testing.