ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
ANS announces 2025 Presidential Citations
One of the privileges of being president of the American Nuclear Society is awarding Presidential Citations to individuals who have demonstrated outstanding effort in some manner for the benefit of ANS or the nuclear community at large. Citations are conferred twice each year, at the Annual and Winter Meetings.
ANS President Lisa Marshall has named this season’s recipients, who will receive recognition at the upcoming Annual Conference in Chicago during the Special Session on Tuesday, June 17.
Marat Margulis, Erez Gilad
Nuclear Technology | Volume 196 | Number 2 | November 2016 | Pages 377-395
Technical Paper | doi.org/10.13182/NT16-23
Articles are hosted by Taylor and Francis Online.
The application of best-estimate codes [coupled neutron kinetics (NK)/thermal hydraulics (TH)] for safety analyses of research reactors (RRs) has gained considerable momentum during the past decade. Application of these codes is largely facilitated by the high level of technological maturity and expertise that these codes allow as a safety technology in nuclear power plants, and it is largely driven by International Atomic Energy Agency activities. The present study belongs in this framework and presents the development and application of the coupled NK and TH code THERMO-T to the analysis of protected reactivity insertion accidents and loss-of-flow accidents in a typical RR with standard Materials Testing Reactor plate-type fuel elements. The coupling is realized by considering the neutronic reactivity feedbacks of the fuel and coolant temperatures and a heat generation model for the reactor power. The neutron flux in the reactor core is solved by applying point reactor kinetic equations and employing radial and axial power distributions calculated from a three-dimensional full-core model by the continuous-energy Monte Carlo reactor physics code Serpent. The evolution of temporal and spatial distributions of the fuel, cladding, and coolant temperatures is calculated for all fuel channels by using a finite volume time implicit numerical scheme for solving a three-conservation equation model. In this study, additional features, such as critical heat flux ratio prediction and decay heat model, are implemented for both highly enriched uranium and low-enriched uranium cores, and a comprehensive comparison of THERMO-T results is performed against other codes.