ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
ANS announces 2025 Presidential Citations
One of the privileges of being president of the American Nuclear Society is awarding Presidential Citations to individuals who have demonstrated outstanding effort in some manner for the benefit of ANS or the nuclear community at large. Citations are conferred twice each year, at the Annual and Winter Meetings.
ANS President Lisa Marshall has named this season’s recipients, who will receive recognition at the upcoming Annual Conference in Chicago during the Special Session on Tuesday, June 17.
Brian Kelleher, Kieran Dolan, Mark Anderson, Kumar Sridharan
Nuclear Technology | Volume 195 | Number 3 | September 2016 | Pages 239-252
Technical Paper | doi.org/10.13182/NT15-140
Articles are hosted by Taylor and Francis Online.
A compact electrochemical probe has been used to measure the redox potential ranges of molten Li2BeF4, a candidate nuclear reactor coolant commonly referred to as flibe, via a dynamic beryllium reference electrode. This probe is capable of operating on a loop, but was used on a static system in salt at temperatures up to 600°C. The probe has been used to measure Li2BeF4 salt with observed redox potentials ranging from −1.792 ± 0.002 V to −0.465 ± 0.134 V, yielding individual errors as low as ± 4 mV, and weighted groupings with errors as low as ± 1 mV. The most reducing measurement taken with acceptable error was −0.962 ± 0.011 V. This probe can be adapted for use in many laboratory experiments using flibe and should be considered for any corrosion experiment supporting the development of a next-generation molten salt reactor.