ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
ANS announces 2025 Presidential Citations
One of the privileges of being president of the American Nuclear Society is awarding Presidential Citations to individuals who have demonstrated outstanding effort in some manner for the benefit of ANS or the nuclear community at large. Citations are conferred twice each year, at the Annual and Winter Meetings.
ANS President Lisa Marshall has named this season’s recipients, who will receive recognition at the upcoming Annual Conference in Chicago during the Special Session on Tuesday, June 17.
D. J. Curtis, C. W. Forsberg
Nuclear Technology | Volume 195 | Number 3 | September 2016 | Pages 335-352
Technical Paper | doi.org/10.13182/NT16-14
Articles are hosted by Taylor and Francis Online.
The authors propose the development of a Nuclear Renewable Oil Shale System (NROSS) to economically provide dispatchable electricity and liquid fossil fuels with low carbon dioxide emissions. High-capital-cost low-operating-cost nuclear, wind, and solar systems operate at full capacity. When excess electricity production causes low electricity prices, heat from the light water reactors (LWRs) and excess electricity from wind and solar systems produce shale oil.
Oil shale contains kerogen, a solid organic material trapped in sedimentary shale, which upon slow heating is converted into a high-quality light crude oil. Recoverable oil in U.S. oil shale deposits exceeds conventional global oil reserves. Oil shale is preheated using heat (delivered as steam) from LWRs to about 220°C and then further heated using electricity from the LWRs and the electric grid to raise shale temperatures to ~370°C to decompose kerogen into light crude oil, natural gas, and char.
The NROSS results in a zero-carbon electricity grid. The NROSS process of converting kerogen to light crude oil results in lower greenhouse gas emissions per liter of diesel or gasoline than other methods of producing liquid fossil fuels. The full use of capital-intensive generating assets minimizes total costs. Large oil shale deposits exist around the world, including in the western United States (Colorado, Utah, and Wyoming), China, and Europe (the Baltic states, Sweden, and western Russia).