ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Fermi America looks to go public as NRC accepts COLA for AP1000s
Texas Tech University and Fermi America are now one step closer to realizing their massive vision for the Advanced Energy and Intelligence Campus in Amarillo, Texas, as the Nuclear Regulatory Commission has accepted the first two parts of its combined license application (COLA) for four Westinghouse AP1000s.
Augustus Merwin, Dev Chidambaram
Nuclear Technology | Volume 195 | Number 2 | August 2016 | Pages 204-212
Technical Paper | doi.org/10.13182/NT15-126
Articles are hosted by Taylor and Francis Online.
INCONEL alloy 625® (I625) was exposed to molten LiCl-Li2O-Li to evaluate the material reliability for applications involving the electrolytic reduction of uranium oxide. Samples of I625 were exposed to solutions of LiCl with 1 and 2 wt% Li2O, containing either 0, 0.5, or 1 wt% metallic lithium for 20 h at 650°C. Additional experiments exposed samples to LiCl saturated with Li2O to investigate the mechanism of interaction between materials and the melt. Postexposure sample surface morphology and chemistry were studied using scanning electron microscopy and X-ray photoelectron spectroscopy. Additionally, inductively coupled plasma–optical emission spectroscopy was used to analyze the melt to determine the alloy constituents that leached out of the coupon during the exposure. The inclusion of 0.5 wt% metallic lithium in the molten solution was found to increase the stability of chromium-rich surface films and suppress the dissolution rate of alloying elements, compared to melts of LiCl-Li2O containing no metallic Li. Alternatively, samples exposed to solutions containing 1 wt% metallic lithium did not form surface films and demonstrated evidence of chromium depletion. The degradation of materials exposed to solutions containing 1 wt% metallic lithium was observed to be different from samples exposed to solutions saturated with lithium oxide, demonstrating a chemical effect other than, or in addition to, salt basicity.