ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Edward Lahoda, Herbert Feinroth, Marcelo Salvatore, Diego O. Russo, Holly Hamilton
Nuclear Technology | Volume 160 | Number 1 | October 2007 | Pages 100-111
Technical Paper | Annular Fuel | doi.org/10.13182/NT07-A3886
Articles are hosted by Taylor and Francis Online.
This paper summarizes the work performed to examine the feasibility of manufacturing internally and externally cooled annular fuel for high-power-density pressurized water reactors (PWRs) and to demonstrate commercially viable manufacturing processes at bench scale. Five different manufacturing processes were considered, and two were selected for further development and demonstration. These are (a) the traditional press and sinter technique currently used in solid pellet manufacture and (b) the vibration compaction (VIPAC) technique, in which granulated and sintered urania fuel particles are vibration compacted into a prefabricated annular space. Two separate pellet manufacturing trials were undertaken, one at the Westinghouse, Columbia, South Carolina, plant and one at INVAP facilities in Argentina. At the INVAP plant the pellets were loaded between small and large cladding tubes and seal welded to demonstrate the entire manufacturing steps. At Atomic Energy of Canada Limited, the VIPAC approach was used to perform short test segments as well as 1219-mm (4-ft)-long fuel rods. The overall conclusion of the work is that the press and sinter technique can produce annular pellets and annular fuel elements that meet the density and dimensional needs of the annular fuel design and hence is a viable approach toward fabrication of such high-power-density fuel. This process is most like that used in current commercial fuel production and hence would pose the least disruption in any future annular fuel use in commercial PWRs. This work also demonstrated that the VIPAC approach is capable of making high-quality annular fuel elements, but not with the fuel density required for adequate performance. Addition of uranium metal powder to the vibrated compact was found to be necessary to achieve the required uranium fuel loading.