ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
Doonyapong Wongsawaeng, Donald Olander
Nuclear Technology | Volume 159 | Number 3 | September 2007 | Pages 279-291
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT07-A3876
Articles are hosted by Taylor and Francis Online.
A liquid metal (LM) consisting of one-third weight fraction each of Pb, Sn, and Bi has been investigated as the bonding substance in place of He in the pellet-cladding gap of light water reactor fuel elements. The LM bond eliminates the large T over the preclosure gap that is characteristic of helium-bonded fuel elements. Because the LM does not wet either UO2 or Zircaloy, simply loading fuel pellets into a cladding tube containing LM at atmospheric pressure leaves unfilled regions (voids) in the bond, which lead to local fuel hot spots. Voids were eliminated during fabrication by first evacuating the rod loaded with solid alloy and a fuel stack, melting the alloy, pushing down the fuel stack to drive the LM into the gap, and finally applying at least 5 atm He overpressure. Fabrication of a 4-m-long full-scale fuel rod using this technique was successfully demonstrated. A destructive examination revealed numerous breaks in the frozen alloy bond, but all of these appeared to result from handling the fuel rod. Application to commercial fuel manufacturing should require only minor modifications to existing fabrication lines. The most suitable nondestructive examination technique utilizes a collimated X-ray beam to probe edge-on the region between the pellet surface and the cladding inside diameter.