ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
K. Schmid, M. J. Baldwin, R. P. Doerner, D. Nishijima
Nuclear Technology | Volume 159 | Number 3 | September 2007 | Pages 238-244
Technical Paper | Beryllium Technology | doi.org/10.13182/NT07-A3871
Articles are hosted by Taylor and Francis Online.
The deposition of beryllium (Be) on carbon (C) and tungsten (W) has been studied at the PISCES-B divertor simulator. Samples of C and W were exposed to a deuterium plasma that was seeded with Be from a small effusion cell mounted ~120 mm upstream from the sample. The incident and eroded flux of Be from these samples was monitored through visible light spectroscopy. The surface composition and layer thickness were measured using Auger electron spectroscopy and ion beam analysis. Results on the formation of Be layers on C and W focusing on the layer growth rate and thickness as functions of temperature are presented. Modeling calculations of Be layer formation on graphite can explain the equilibrium surface composition, but a prediction of the layer formation rate is hampered by an incomplete model of the influence of surface morphology on chemical erosion of the surface. For Be layer formation on W, the modeling calculations including Be diffusion and sublimation correctly predict the Be uptake into the W surface.