ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
K. Tsuchiya, H. Kawamura, T. Ishida
Nuclear Technology | Volume 159 | Number 3 | September 2007 | Pages 228-232
Technical Paper | Beryllium Technology | doi.org/10.13182/NT07-A3869
Articles are hosted by Taylor and Francis Online.
Beryllium alloys such as Be-Ti and Be-V have been proposed as candidates for advanced neutron multipliers because of their high melting point, high beryllium content, low activation, good chemical stability, etc. In this study, compatibility tests between Be-Ti and structural material were performed, and the effect of Ti content on compatibility was evaluated. Four kinds of Be-Ti alloys (Ti content: 3 to 8.5 at.%) were used in the compatibility tests. After annealing of each Be-Ti alloy in contact with Type 316LN stainless steel (SS316LN), depletion of Be was observed by electron probe microanalysis on the Be-Ti side after annealing at 800°C for 1000 h, but the reaction products were not observed on the Be-Ti side. Reaction products such as BeNi and Be2Fe were observed on the surface of SS316LN. The thickness and growth rate of the reaction layer on the SS316LN side decreased with increasing Ti content in the Be-Ti alloys.