ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Applications open for the fall cohort of Mentor Match
Applications are officially open for the second cohort of the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the fall cohort, which will take place October 1–November 30, is September 17. The application form can be found here.
Behrooz Khorsandi, Mehdi Reisi Fard, Thomas E. Blue, Don W. Miller, Wolfgang Windl
Nuclear Technology | Volume 159 | Number 2 | August 2007 | Pages 208-220
Technical Paper | Radiation Measurements and Instrumentation | doi.org/10.13182/NT07-A3866
Articles are hosted by Taylor and Francis Online.
Focusing on the gas turbine-modular helium reactor (GT-MHR), we have developed methods to predict the positions in a nuclear reactor where silicon carbide (SiC) semiconductor diode detectors may work functionally as neutron monitors for at least one refueling cycle. Using MCNP and TRIM, we determined the count rate due to fast neutron-induced primary knock-on atoms and tritons, and the number of displacement damage defects that are created per count and over a refueling cycle, for SiC diode detectors placed at four different radial locations in the central reflector of the GT-MHR. We found that although the total count rates for the SiC detectors placed in locations close to the fuel elements were highest (~1.2 × 106 counts/s), at those locations the detectors cannot tolerate the damage caused by fast neutrons for a reactor refueling cycle. On the contrary, for SiC detectors placed at the center of the central reflector, where the thermal neutron flux is the dominant flux component, the detectors can survive a GT-MHR refueling cycle. At this location, the total count rate for the SiC diode detectors that we have analyzed is ~1.6 × 105 counts/s.