ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Behrooz Khorsandi, Mehdi Reisi Fard, Thomas E. Blue, Don W. Miller, Wolfgang Windl
Nuclear Technology | Volume 159 | Number 2 | August 2007 | Pages 208-220
Technical Paper | Radiation Measurements and Instrumentation | doi.org/10.13182/NT07-A3866
Articles are hosted by Taylor and Francis Online.
Focusing on the gas turbine-modular helium reactor (GT-MHR), we have developed methods to predict the positions in a nuclear reactor where silicon carbide (SiC) semiconductor diode detectors may work functionally as neutron monitors for at least one refueling cycle. Using MCNP and TRIM, we determined the count rate due to fast neutron-induced primary knock-on atoms and tritons, and the number of displacement damage defects that are created per count and over a refueling cycle, for SiC diode detectors placed at four different radial locations in the central reflector of the GT-MHR. We found that although the total count rates for the SiC detectors placed in locations close to the fuel elements were highest (~1.2 × 106 counts/s), at those locations the detectors cannot tolerate the damage caused by fast neutrons for a reactor refueling cycle. On the contrary, for SiC detectors placed at the center of the central reflector, where the thermal neutron flux is the dominant flux component, the detectors can survive a GT-MHR refueling cycle. At this location, the total count rate for the SiC diode detectors that we have analyzed is ~1.6 × 105 counts/s.