ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Tunc Aldemir, Don W. Miller, Michael Stovsky, Jason Kirschenbaum, Paolo Bucci, L. Anthony Mangan, Audeen Fentiman, Steven A. Arndt
Nuclear Technology | Volume 159 | Number 2 | August 2007 | Pages 167-191
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT07-A3863
Articles are hosted by Taylor and Francis Online.
Nuclear power plants are in the process of replacing the existing analog instrumentation and control (I&C) systems with digital technology. Digital systems distinguish themselves from other control and instrumentation systems mainly due to the presence of active software/firmware as well as hardware. The U.S. Nuclear Regulatory Commission policy statement on the use of probabilistic risk assessment (PRA) methods in nuclear regulatory activities encourages licensees to use PRA and associated analyses to support the licensing applications to the extent supported by the state-of-the-art and data. Before digital system reviews can be performed in a risk-informed manner, PRAs will need the capability to model digital I&C systems. The available methodologies for the reliability and risk modeling of digital I&C systems are reviewed with respect to their capability to account for the features of the digital I&C systems relevant to digital reactor protection and control systems, as well as the integrability of the resulting model into an existing PRA. It is concluded that the methodologies that rank as the top two with most positive features and least negative or uncertain features (using subjective criteria based on reported experience) are the dynamic flowgraph methodology and the Markov methodology combined with the cell-to-cell mapping technique, each with different advantages and limitations.