ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Bo Wook Rhee, Hangbok Choi, Joo Hwan Park, Kyung Myung Chae, Hye Jeong Yun
Nuclear Technology | Volume 159 | Number 2 | August 2007 | Pages 158-166
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT07-A3862
Articles are hosted by Taylor and Francis Online.
A three-dimensional (3-D) computational fluid dynamics (CFD) model has been developed to analyze the liquid poison injection phenomenon of shutdown system 2 (SDS-2) of a Canada deuterium uranium (CANDU) reactor. Because the SDS-2 injects highly pressurized liquid poison into the moderator in a very short time, it is a major safety priority to confirm the effectiveness of the SDS-2 as one of the shutdown systems. In general, it is difficult to directly measure the velocity and concentration of the poison jet during an injection because of the complex nature of the injection system and the process. Therefore, a series of investigations has been performed to develop a CFD model for liquid poison injection phenomenon with limited validations. In this study, the validation of the existing CFD model for the poison injection phenomenon of the CANDU SDS-2 is extended to be applicable to a CANDU-6 reactor as well as a larger CANDU reactor. The analyses showed that the poison jet growth for those experiments simulated by the 3-D CFD model agrees reasonably with the experimental results. Therefore, it is concluded that the proposed 3-D CFD model can be used to assess the effectiveness of a liquid poison injection in compliance with the intended functional design requirements of the CANDU SDS-2.