ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Bo Wook Rhee, Hangbok Choi, Joo Hwan Park, Kyung Myung Chae, Hye Jeong Yun
Nuclear Technology | Volume 159 | Number 2 | August 2007 | Pages 158-166
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT07-A3862
Articles are hosted by Taylor and Francis Online.
A three-dimensional (3-D) computational fluid dynamics (CFD) model has been developed to analyze the liquid poison injection phenomenon of shutdown system 2 (SDS-2) of a Canada deuterium uranium (CANDU) reactor. Because the SDS-2 injects highly pressurized liquid poison into the moderator in a very short time, it is a major safety priority to confirm the effectiveness of the SDS-2 as one of the shutdown systems. In general, it is difficult to directly measure the velocity and concentration of the poison jet during an injection because of the complex nature of the injection system and the process. Therefore, a series of investigations has been performed to develop a CFD model for liquid poison injection phenomenon with limited validations. In this study, the validation of the existing CFD model for the poison injection phenomenon of the CANDU SDS-2 is extended to be applicable to a CANDU-6 reactor as well as a larger CANDU reactor. The analyses showed that the poison jet growth for those experiments simulated by the 3-D CFD model agrees reasonably with the experimental results. Therefore, it is concluded that the proposed 3-D CFD model can be used to assess the effectiveness of a liquid poison injection in compliance with the intended functional design requirements of the CANDU SDS-2.