ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
W. F. G. van Rooijen, J. L. Kloosterman, T. H. J. J. van der Hagen, H. van Dam
Nuclear Technology | Volume 159 | Number 2 | August 2007 | Pages 119-133
Technical Paper | Fission Reactors | doi.org/10.13182/NT07-A3859
Articles are hosted by Taylor and Francis Online.
In this paper passive reactivity control devices for a Generation IV gas-cooled fast reactor (GCFR) are discussed. The proposed devices use liquid 6Li as absorber. The device is triggered by a freeze seal, and upon activation the 6Li is irreversibly introduced into the core region by pressure differences. The device is dubbed the lithium injection module (LIM). Transient thermohydraulic calculations were done using the CATHARE2 code on a simplified thermohydraulic model of GFR600, a 600-MW(thermal) GCFR investigated in the scope of the European GCFR-STREP. The thermohydraulic model uses an accurate model of the ceramic fuel plates and includes natural convection decay heat removal circuits. To properly account for power production during the transient, a synthetic decay power curve was made based on the ANSI/ANS-5.1-1994 law. Loss-of-flow and control rod withdrawal/ejection transients are presented. Neutronic calculations show that the LIMs have a low reactivity worth between -2.1 and -1.5 $. In spite of their low worth, the LIMs are capable of keeping the reactor power bounded during all calculated transients. Shutdown is not always achieved, depending on the kind of transient under consideration. For pressurized loss of flow, recriticality due to Doppler feedback may become problematic in the natural-circulation phase. For rapid control rod ejections, the resulting very fast power transients cause concern for material degradation. One LIM would be enough to control reactor power, but redundancy may call for more than one LIM in the core.