ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
Michael V. Frank, William E. Kastenberg
Nuclear Technology | Volume 159 | Number 1 | July 2007 | Pages 25-38
Technical Paper | Reactor Safety | doi.org/10.13182/NT07-A3854
Articles are hosted by Taylor and Francis Online.
A risk-management framework for space mission launches of nuclear reactors is presented in this paper. The framework is based on a set of risk-based safety goals and relies on decision-theoretic principles that advance system design from concept through operation. Because time-dependent behavior is inherent in space missions, a quasi-dynamic probabilistic risk assessment framework is described. We illustrate a use of the framework with a risk management example.A rationale for, and a trial set of, qualitative safety goals and quantitative design objectives for launching space nuclear power plants are presented. The rationale is based on background risks to the general public, on accident risks to the population in the area of the launch site and on other large-consequence single-event catastrophes. Guidance is also obtained from the safety goals developed by the U.S. Nuclear Regulatory Commission, the U.S. Department of Energy, and the Federal Aviation Administration. The quantitative design objectives developed and presented are also compared to the calculated risks of previous launches with radioisotope thermal-electric generators such as for the Galileo, Ulysses, and Cassini missions.