ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Michael V. Frank, William E. Kastenberg
Nuclear Technology | Volume 159 | Number 1 | July 2007 | Pages 25-38
Technical Paper | Reactor Safety | doi.org/10.13182/NT07-A3854
Articles are hosted by Taylor and Francis Online.
A risk-management framework for space mission launches of nuclear reactors is presented in this paper. The framework is based on a set of risk-based safety goals and relies on decision-theoretic principles that advance system design from concept through operation. Because time-dependent behavior is inherent in space missions, a quasi-dynamic probabilistic risk assessment framework is described. We illustrate a use of the framework with a risk management example.A rationale for, and a trial set of, qualitative safety goals and quantitative design objectives for launching space nuclear power plants are presented. The rationale is based on background risks to the general public, on accident risks to the population in the area of the launch site and on other large-consequence single-event catastrophes. Guidance is also obtained from the safety goals developed by the U.S. Nuclear Regulatory Commission, the U.S. Department of Energy, and the Federal Aviation Administration. The quantitative design objectives developed and presented are also compared to the calculated risks of previous launches with radioisotope thermal-electric generators such as for the Galileo, Ulysses, and Cassini missions.