ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
Yong Jin Cho, Gyoo Dong Jeun
Nuclear Technology | Volume 158 | Number 3 | June 2007 | Pages 366-377
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT07-A3848
Articles are hosted by Taylor and Francis Online.
The header of a Canada deuterium uranium reactor (CANDU) is an important component in simulating the fuel channel behavior because the header's hydraulic behavior controls the feeder void fraction, which affects the fuel bundle coolability. In CANDU accident analyses, the liquid entrainment and vapor pull-through (off-take) phenomena should be considered when horizontal stratification is achieved inside the header. The current RELAP5 off-take model can treat only three directions: vertical upward, vertical downward, and side oriented junctions. In this study, the RELAP5 off-take model was modified and generalized by considering the geometric effect of branch angles. Based on Craya's approach, the critical height correlation was reconstructed by use of the branch line connection angle. The new model in RELAP5/CANDU could be applied to vertical upward, vertical downward, and angled branch. The verification and validation analyses for this new model were performed using separate effect test and integral effect test results. The verification and validation analyses show improved accuracy with the new model.