ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
Dirk Lucas, Eckhard Krepper, H.-M. Prasser
Nuclear Technology | Volume 158 | Number 2 | May 2007 | Pages 291-303
Technical Paper | Nuclear Reactor Thermal Hydraulics | doi.org/10.13182/NT07-A3843
Articles are hosted by Taylor and Francis Online.
A detailed experimental database, obtained for a 195-mm inner diameter, 9-m-long pipe was used for the validation of models applied in computational fluid dynamics codes for the simulation of bubbly flow. Since the bubbles were injected via holes at the pipe wall, very useful information on the bubble migration from the pipe wall toward the pipe's center was obtained by measurements at different distances between gas injection and measuring plane. The bubble migration is determined by the forces acting on the bubbles. The multibubble-size group test solver, introduced earlier but with some new extensions, was used to analyze the data. A comparison of results from a simulation and the experimental findings indicate that the turbulent dispersion force according to the Favre averaged drag model is too strong compared with the drag in the radial direction. No appropriate models for bubble coalescence and breakup, which can be applied for a wide range of gas and liquid volume flow rates, are available as yet. Nevertheless, for selected combinations of volume flow rates, the calculated bubble size distributions and radial gas volume fraction profiles show an acceptable agreement with the experimental data.