ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2021)
February 9–11, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
February 2021
Nuclear Technology
January 2021
Fusion Science and Technology
November 2020
Latest News
Notes on fusion
The ST25-HTS tokamak.
Governments around the world have been interested in fusion for more than 70 years. Fusion research was largely secret until 1968, when the Soviets unveiled exciting results from their tokamak (a magnetic confinement fusion device with a particular configuration that produces a toroidal plasma). The Soviets realized that tokamaks were not useful as weapons but could produce plasma in the million-degree temperature range to demonstrate Soviet scientific and technical prowess to the world.
Following this breakthrough, government laboratories around the world continued to pursue various methods of confining hot plasma to understand plasma physics under extreme conditions, getting closer and closer to the conditions necessary for fusion energy production. Tokamaks have been by far the most successful configuration. In the 1990s, the Tokamak Fusion Test Reactor at the Princeton Plasma Physics Laboratory produced 10 MW of fusion power using deuterium-tritium fusion. A few years later, the Joint European Torus (JET) in the United Kingdom increased that to 16 MW, getting close to breakeven using 24 MW of power to heat the plasma.
Hyo-Nam Kim, Ihn Namgung
Nuclear Technology | Volume 195 | Number 1 | July 2016 | Pages 15-28
Technical Paper | dx.doi.org/10.13182/NT15-17
Articles are hosted by Taylor and Francis Online.
In severe accident conditions, the molten core material forms an internally heated debris bed and eventually becomes a molten pool of corium, which will cause or induce thermal and mechanical loads to the reactor vessel lower head (RVLH) resulting in penetrations leading to failure. A good understanding of the mechanical behavior of the RVLH is essential for estimating structural integrity and improving accident mitigation strategies.
Coupled thermomechanical analysis using ANSYS, a general-purpose finite element method analysis code, was used to evaluate the possibility and timescale of failure. A two-dimensional axisymmetric finite element model was adopted based on APR1400 design data with relevant material properties including creep data.
From the study, it was found that the possibility of plastic and creep failure of the RVLH for the APR1400 was considerably low for a full-core meltdown of the reactor core under ex-vessel cooling conditions with an ambient temperature of 130°C and constant decay heat from the corium, but the lower head may fail unless the increased internal pressure can be reduced on time. Plastic failure can be a major cause of lower head failure of a reactor vessel in high internal pressure conditions and creep failure is not negligible, since failure mechanisms under long-lasting periods are considered. This study found that the APR1400 RVLH failure time is around 220 h using 15% creep strain failure criteria from the postulated accident condition.