ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Jun Li, Xiao-Bin Tang, Long-Gang Gui, Yun Ge, Ying Chen, Da Chen
Nuclear Technology | Volume 195 | Number 1 | July 2016 | Pages 79-86
Technical Paper | doi.org/10.13182/NT15-72
Articles are hosted by Taylor and Francis Online.
An off-line boron meter in a pressurized water reactor (PWR) nuclear power plant has the disadvantages of lagging data measurements and a long response time. This paper aims to shorten the response time and enhance the measurement accuracy of this type of device. First, the shortcomings of off-line boron meters were analyzed and the serpentuator system was proposed to replace the typical container system. Then, both FLUENT and GEANT simulation tools were used to demonstrate the merits of the serpentuator system. FLUENT was used to simulate the fluid response, while GEANT4 was used to obtain the f(P) curve. The simulation results from FLUENT indicate that the residence time of the fluid in the container system was approximately 9.5 times that in the serpentuator system. The simulation results obtained from GEANT4 manifest that the f(P) curve of the rectangular section was steeper than for the circular section. When the polyethylene was 8 cm thick, the f(P) curve was the steepest. Compared with a serpentuator made of titanium alloy, stainless steel, and brass, a serpentuator made of zirconium alloy or aluminum alloy achieved a steeper f(P) curve. Therefore, the serpentuator system is more applicable for PWRs using an off-line boron letdown through a chemical and volume control system.