ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Jun Li, Xiao-Bin Tang, Long-Gang Gui, Yun Ge, Ying Chen, Da Chen
Nuclear Technology | Volume 195 | Number 1 | July 2016 | Pages 79-86
Technical Paper | doi.org/10.13182/NT15-72
Articles are hosted by Taylor and Francis Online.
An off-line boron meter in a pressurized water reactor (PWR) nuclear power plant has the disadvantages of lagging data measurements and a long response time. This paper aims to shorten the response time and enhance the measurement accuracy of this type of device. First, the shortcomings of off-line boron meters were analyzed and the serpentuator system was proposed to replace the typical container system. Then, both FLUENT and GEANT simulation tools were used to demonstrate the merits of the serpentuator system. FLUENT was used to simulate the fluid response, while GEANT4 was used to obtain the f(P) curve. The simulation results from FLUENT indicate that the residence time of the fluid in the container system was approximately 9.5 times that in the serpentuator system. The simulation results obtained from GEANT4 manifest that the f(P) curve of the rectangular section was steeper than for the circular section. When the polyethylene was 8 cm thick, the f(P) curve was the steepest. Compared with a serpentuator made of titanium alloy, stainless steel, and brass, a serpentuator made of zirconium alloy or aluminum alloy achieved a steeper f(P) curve. Therefore, the serpentuator system is more applicable for PWRs using an off-line boron letdown through a chemical and volume control system.