ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Christopher B. Azmeh, Kyle L. Walton, Tushar K. Ghosh, Sudarshan K. Loyalka, Dabir S. Viswanath, Robert V. Tompson
Nuclear Technology | Volume 195 | Number 1 | July 2016 | Pages 87-97
Technical Paper | doi.org/10.13182/NT15-54
Articles are hosted by Taylor and Francis Online.
For very-high-temperature reactors (VHTRs), the ability of structural components, specifically the reactor pressure vessel, to dissipate heat by radiation is an important design criterion. Thus, in selecting components for VHTR applications, it is necessary to measure the emissivity of all structural materials being considered. With the standard ASTM C835-06 test method, the total hemispherical emissivity of A387 Grade 91 steel, a leading candidate alloy for VHTR structural applications, was measured under four distinct surface conditions: (1) mild abrasion following electrical discharge machining, (2) increased surface roughness via sandblasting, (3) coating with NBG-18 graphite powder, and (4) oxidization in air. A detailed account of experimental methods and procedures, as well as the results of the total hemispherical emissivity measurements, are presented.