ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Luis Palomino, Mohamed S. El-Genk
Nuclear Technology | Volume 195 | Number 1 | July 2016 | Pages 1-14
Technical Paper | doi.org/10.13182/NT15-102
Articles are hosted by Taylor and Francis Online.
The Scalable LIquid Metal–cooled small Modular (SLIMM) reactor generates 10 to 100 MW(thermal) for extended periods without refueling. With the aid of an in-vessel chimney and a Na/Na helically coiled tubes heat exchanger (HEX) in the downcomer, natural circulation of in-vessel liquid sodium cools the SLIMM reactor core during nominal operation and after shutdown. With an unlikely malfunction of the Na/Na HEX, natural circulation of ambient air along the outer surface of the guard vessel wall maintains in-vessel natural circulation of liquid sodium and passively removes the decay heat after reactor shutdown. This paper performs three-dimensional computational fluid dynamics and thermal-hydraulic analyses to obtain preliminary estimates of the rate of decay heat removal by ambient air in case of a malfunction of the in-vessel Na/Na HEX and investigates the effect of using longitudinal metal fins along the guard vessel outer surface. The analyses calculate the contributions of natural convection and thermal radiation to the rate of decay heat removal by ambient air. For the same sodium temperatures in the reactor vessel downcomer as during steady-state nominal operation at 100 MW(thermal), the decay heat removal rate by ambient air without metal fins is ~1.0 MW(thermal), increasing by 26% to 1.26 MW(thermal) with metal fins. The contributions of natural convection and thermal radiation to the rate of decay heat removal are 58% and 42% without metal fins and 70% and 30% with metal fins, respectively. Extending the metal fins an additional 5 m and doubling the axial thermal conductivity increase the rate of the decay heat removal only slightly, to 1.28 MW(thermal).