ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Luis Palomino, Mohamed S. El-Genk
Nuclear Technology | Volume 195 | Number 1 | July 2016 | Pages 1-14
Technical Paper | doi.org/10.13182/NT15-102
Articles are hosted by Taylor and Francis Online.
The Scalable LIquid Metal–cooled small Modular (SLIMM) reactor generates 10 to 100 MW(thermal) for extended periods without refueling. With the aid of an in-vessel chimney and a Na/Na helically coiled tubes heat exchanger (HEX) in the downcomer, natural circulation of in-vessel liquid sodium cools the SLIMM reactor core during nominal operation and after shutdown. With an unlikely malfunction of the Na/Na HEX, natural circulation of ambient air along the outer surface of the guard vessel wall maintains in-vessel natural circulation of liquid sodium and passively removes the decay heat after reactor shutdown. This paper performs three-dimensional computational fluid dynamics and thermal-hydraulic analyses to obtain preliminary estimates of the rate of decay heat removal by ambient air in case of a malfunction of the in-vessel Na/Na HEX and investigates the effect of using longitudinal metal fins along the guard vessel outer surface. The analyses calculate the contributions of natural convection and thermal radiation to the rate of decay heat removal by ambient air. For the same sodium temperatures in the reactor vessel downcomer as during steady-state nominal operation at 100 MW(thermal), the decay heat removal rate by ambient air without metal fins is ~1.0 MW(thermal), increasing by 26% to 1.26 MW(thermal) with metal fins. The contributions of natural convection and thermal radiation to the rate of decay heat removal are 58% and 42% without metal fins and 70% and 30% with metal fins, respectively. Extending the metal fins an additional 5 m and doubling the axial thermal conductivity increase the rate of the decay heat removal only slightly, to 1.28 MW(thermal).