ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Naphtali M. Mokgalapa, Tushar K. Ghosh, Robert V. Tompson, Sudarshan K. Loyalka
Nuclear Technology | Volume 194 | Number 3 | June 2016 | Pages 353-368
Technical Paper | doi.org/10.13182/NT15-106
Articles are hosted by Taylor and Francis Online.
A methodology is developed to measure the adhesion force and the work of adhesion between aerosols generated in very-high-temperature reactors (VHTRs) and interacting with structural materials. The method uses an interactive system of a silver particle interacting with Haynes 230 (H230) surfaces, compares the measured data with theoretical values, and uses an atomic force microscope in an air environment glove box with ambient temperature of 20.27°C and relative humidity of 34.97%. The adhesion force data are obtained for a silver particle interacting with H230 under four different surface conditions including “as received” and after oxidation for 5, 10, and 15 min, respectively. It was found that the JKR (Johnson-Kendall-Roberts) theory predicted values that were up to three orders of magnitude higher than the experimental data. In contrast, the inclusion of surface roughness from both the particle and H230 samples in the calculations produced results that are one order of magnitude higher than the experimental data. These comparisons provide insight into the significant influence that surface roughness has on adhesion force. A range of values of 0.02 to 0.3 μN was obtained from the adhesion force distributions of measured data that can be used as bounds on forces that can be produced in a silver-H230 interactive system.