ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
C. W. Forsberg, J. D. Stempien, M. J. Minck, R. G. Ballinger
Nuclear Technology | Volume 194 | Number 3 | June 2016 | Pages 295-313
Technical Paper | doi.org/10.13182/NT15-87
Articles are hosted by Taylor and Francis Online.
Fluoride salt–cooled High-temperature Reactors (FHRs) are a new type of power reactor that delivers heat to the power cycle between 600°C and 700°C. The FHR uses High-Temperature Gas-cooled Reactor (HTGR) graphite-matrix coated-particle fuel with failure temperatures of 1650°C. The FHR coolants are clean fluoride salts that have melting points above 350°C and boiling points above 1400°C. This combination may enable the design of a large FHR that will not have significant fuel failure and thus radionuclide releases to the environment even in a beyond-design-basis accident (BDBA) that include failure of all cooling systems, the vessel, and containment systems. A first effort has been undertaken to understand FHR BDBAs and develop an FHR BDBA system to prevent major fuel failure if an accident occurs in a large FHR.
Four design features limit BDBA fuel temperatures to lower than fuel failure temperatures. First, there is a large temperature drop to transfer decay heat from the fuel to the environment in a BDBA. Second, the large temperature difference between normal operating temperatures and fuel failure temperatures allows the use of increasing temperatures in an accident to degrade the insulation system and other barriers that prevent efficient transfer of decay heat from the reactor core to the environment in an accident. Third, the silo around the reactor vessel contains a BDBA salt that in an accident heats up, melts, and partly floods the silo to improve heat transfer from fuel to the environment. Fourth, the fuel and coolant retain fission products and actinides at high temperatures.