ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
ANS announces 2025 Presidential Citations
One of the privileges of being president of the American Nuclear Society is awarding Presidential Citations to individuals who have demonstrated outstanding effort in some manner for the benefit of ANS or the nuclear community at large. Citations are conferred twice each year, at the Annual and Winter Meetings.
ANS President Lisa Marshall has named this season’s recipients, who will receive recognition at the upcoming Annual Conference in Chicago during the Special Session on Tuesday, June 17.
Dağıstan Şahin, Kenan Ünlü, Kostadin Ivanov
Nuclear Technology | Volume 194 | Number 3 | June 2016 | Pages 324-339
Technical Paper | doi.org/10.13182/NT15-110
Articles are hosted by Taylor and Francis Online.
The main goal of this study is to verify the accuracy of burnup-coupled neutronic calculations when employing the Monte Carlo Utility for Reactor Evolutions (MURE) and MCNP5 codes for modeling TRIGA-type reactors, in this case the Penn State Breazeale Reactor (PSBR) core. Research and educational requirements mainly direct the PSBR operating schedule. With such operating schedules, one particular area of concern, specifically relating to nuclear analytical applications, is time-dependent changes in the neutronic characteristics of the reactor, specifically within the irradiation positions. Particular concern exists among scientists performing neutron activation analysis measurements as to whether continuous variations in reactor operations would cause significant fluctuations in the neutronic characterization parameters of the irradiation positions. A secondary objective of this study is to analyze fluctuations in the neutronic characterization parameters and their dependence on various core conditions as examined by detailed burnup-coupled neutronic simulations. In this study, a burnup-coupled neutronic simulation model of the PSBR is developed using the MURE and MCNP5 codes. The simulation results are verified by a series of experiments including measurements of the core excess reactivity starting from the first core loading in 1965 to 2012, control rod worth, fission product buildup, temperature-dependent reactivity loss, integral control rod worth curves, individual fuel element worth, and neutron flux. Local neutronic calculations of the simulation are confirmed by measuring neutronic characterization parameters for one of the irradiation positions within the PSBR core, namely, dry irradiation tube 1. Analyzing time-dependent data predicted by the simulation, the neutron temperature and the measure of the nonideal epithermal neutron flux distribution are found to be reasonably static. Conversely, the thermal-to-epithermal neutron flux ratio and spectral index are found to be relatively responsive to alterations in the core.