ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Dağıstan Şahin, Kenan Ünlü, Kostadin Ivanov
Nuclear Technology | Volume 194 | Number 3 | June 2016 | Pages 324-339
Technical Paper | doi.org/10.13182/NT15-110
Articles are hosted by Taylor and Francis Online.
The main goal of this study is to verify the accuracy of burnup-coupled neutronic calculations when employing the Monte Carlo Utility for Reactor Evolutions (MURE) and MCNP5 codes for modeling TRIGA-type reactors, in this case the Penn State Breazeale Reactor (PSBR) core. Research and educational requirements mainly direct the PSBR operating schedule. With such operating schedules, one particular area of concern, specifically relating to nuclear analytical applications, is time-dependent changes in the neutronic characteristics of the reactor, specifically within the irradiation positions. Particular concern exists among scientists performing neutron activation analysis measurements as to whether continuous variations in reactor operations would cause significant fluctuations in the neutronic characterization parameters of the irradiation positions. A secondary objective of this study is to analyze fluctuations in the neutronic characterization parameters and their dependence on various core conditions as examined by detailed burnup-coupled neutronic simulations. In this study, a burnup-coupled neutronic simulation model of the PSBR is developed using the MURE and MCNP5 codes. The simulation results are verified by a series of experiments including measurements of the core excess reactivity starting from the first core loading in 1965 to 2012, control rod worth, fission product buildup, temperature-dependent reactivity loss, integral control rod worth curves, individual fuel element worth, and neutron flux. Local neutronic calculations of the simulation are confirmed by measuring neutronic characterization parameters for one of the irradiation positions within the PSBR core, namely, dry irradiation tube 1. Analyzing time-dependent data predicted by the simulation, the neutron temperature and the measure of the nonideal epithermal neutron flux distribution are found to be reasonably static. Conversely, the thermal-to-epithermal neutron flux ratio and spectral index are found to be relatively responsive to alterations in the core.