ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Allen G. Croff, Emory D. Collins, G. D. Del Cul, R. G. Wymer, Alan M. Krichinsky, B. B. Spencer, Brad D. Patton
Nuclear Technology | Volume 194 | Number 2 | May 2016 | Pages 252-270
Technical Paper | doi.org/10.13182/NT15-59
Articles are hosted by Taylor and Francis Online.
Thorium-based nuclear fuel cycles have received renewed attention in both research and public circles since about the year 2000. Much of the attention has been focused on nuclear fission energy production that utilizes thorium as a fertile element for producing fissionable 233U for recycle in thermal reactors, fast reactors, or externally driven systems. Lesser attention has been paid to other fuel cycle operations that are necessary for implementation of a sustainable thorium-based fuel cycle such as reprocessing and fabrication of recycle fuels containing 233U.
This paper first identifies recent literature that has resulted from the renewed interest in thorium-based fuel cycles. Next, differences in the radiation characteristics of nuclear materials associated with thorium-based and uranium-based fuels are discussed, and the generic implications of the differences to nuclear material processing are identified. Then, experience at Oak Ridge National Laboratory concerning processing of thorium and 233U is described in terms of the processing projects and campaigns undertaken and the facilities in which the processing was implemented. This experience then provides the basis for a generalized discussion of processing nuclear materials associated with thorium-based fuel cycles as compared to uranium-based fuel cycles.
This comparative discussion focuses on key out-of-reactor fuel cycle operations: reprocessing of metal-clad oxide and graphite-matrix oxide used nuclear fuels (UNFs) including head-end processing (shearing and dissolution), solvent extraction, product conversion, fuel fabrication, and waste management. It is concluded that the recycle of thorium-based UNF constituents (233U and thorium) is more technically challenging than the recycle of uranium-based UNF constituents (plutonium and uranium) based on the radiation, chemical, and physical characteristics of nuclear materials in thorium-based fuel cycles as compared to uranium-based fuel cycles.