ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Jiyun Zhao, Pradip Saha, Mujid S. Kazimi
Nuclear Technology | Volume 158 | Number 2 | May 2007 | Pages 174-190
Technical Paper | Nuclear Reactor Thermal Hydraulics | doi.org/10.13182/NT07-A3834
Articles are hosted by Taylor and Francis Online.
The single hot-channel thermal-hydraulic stability model is expanded to investigate the effects of heat transport from fuel rods and to water rods on supercritical water-cooled reactor (SCWR) stability. Furthermore, the stability margin of the SCWR is compared with that of a typical boiling water reactor (BWR) by conducting a sensitivity study on operating conditions.The fuel thermal-dynamic effect is studied by coupling a lumped-parameter fuel model with the three-region coolant thermal-hydraulics model. It is found that the fuel heat capacity would dampen the oscillations in the coolant channel and therefore increase the stability of the system. Also, heating of the water rods, which could be allowed in the core, would improve single-channel stability.The stability sensitivity to power and flow rate conditions is analyzed for the U.S. reference SCWR design and compared with a typical BWR. The SCWR is found to be more sensitive to power and flow rate changes than the typical BWR. The water rod heating cannot significantly improve this sensitivity feature of the SCWR stability. The traditional stability measure of oscillation amplitude decay ratio does not capture the extent to which a stability margin exists in a particular design of the SCWR. The robustness of stability should be ascertained by examining accommodation of the potential variation and/or uncertainty about the nominal conditions.