ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
Jiyun Zhao, Pradip Saha, Mujid S. Kazimi
Nuclear Technology | Volume 158 | Number 2 | May 2007 | Pages 158-173
Technical Paper | Nuclear Reactor Thermal Hydraulics | doi.org/10.13182/NT07-A3833
Articles are hosted by Taylor and Francis Online.
The drastic change of fluid density in the reactor core of a supercritical water-cooled reactor (SCWR) gives rise to a concern about density-wave stability. Using a single-channel thermal-hydraulic model, stability boundary maps for the U.S. reference SCWR design have been constructed for both steady state and sliding pressure startup conditions.The supercritical water flow in the reactor core has been simulated using a three-region model: a heavy fluid with constant density, a mixture of heavy fluid and light fluid similar to a homogeneous-equilibrium two-phase mixture, and a light fluid, which behaves like an ideal gas or superheated steam. Two important nondimensional numbers, namely, a pseudosubcooling number Npsub and an expansion number Nexp, have been identified for the supercritical region. The stability map in the supercritical region is then plotted in the plane made of these two numbers. The U.S. reference SCWR design operates in a stable region with a large margin. Sensitivity studies produced results consistent with the findings of the earlier research done for the subcritical two-phase flow.During the sliding pressure startup of the SCWR, a two-phase steam-water mixture at subcritical pressure will appear in the reactor core. A nonhomogeneous (e.g., drift-flux) nonequilibrium two-phase flow model was applied. The characteristic equation was numerically integrated, and stability boundary maps were plotted on the traditional subcooling number versus phase change number (or Zuber number) plane. These maps have been used to develop a sliding pressure SCWR startup strategy avoiding thermal-hydraulic flow instabilities.