ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
E. C. Gomes, J. P. Duarte, P. F. Frutuoso e Melo
Nuclear Technology | Volume 194 | Number 1 | April 2016 | Pages 73-96
Technical Paper | doi.org/10.13182/NT15-29
Articles are hosted by Taylor and Francis Online.
The purpose of this paper is to highlight and model the most important steps in cases of human failure in radiotherapy (teletherapy and brachytherapy) procedures by identifying possible modes of human failure. An approach via Bayesian networks (BNs) to model and highlight the most relevant steps of teletherapy and brachytherapy was used. Finally, as a technique for the quantification of BNs, an expert opinion elicitation procedure was used since no database is available.
In the case of teletherapy, observing only the stages of prescription, planning, and execution, it appears that the step that most increases the success probability, after consideration of preventive measures, is execution. This is in agreement with cases of errors and accidents reported in the literature, considering that more than 50% of these cases are related to the implementation phase. Related to brachytherapy, the most relevant factor was the use of equipment, whose increase in success probability after consideration of preventive measures was 17.2%, demonstrating the importance of a continuous specific training.
It is important to mention that the purpose of this study was not to calculate the risk associated with radiotherapy treatments but rather to check how accident prevention influences the success procedure and observe the relationship among all stages. An uncertainty analysis was performed of the expert data by considering that data scattering followed a normal or a lognormal distribution, due to data ranges considered. This analysis revealed that data scattering was better represented by normal distributions, and the results are consistent with pointwise estimates initially made.