ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
A. Chandrakar, A. K. Nayak, Vinod Gopika
Nuclear Technology | Volume 194 | Number 1 | April 2016 | Pages 39-60
Technical Paper | doi.org/10.13182/NT15-80
Articles are hosted by Taylor and Francis Online.
Research in the field of passive system reliability analysis is garnering sharp interest in the nuclear community. Passive systems are being utilized extensively in current- and future-generation reactors for their normal operations as well as for safety critical operations during any accidental conditions. In this paper, we present a methodology called Analysis of Passive System ReliAbility Plus (APSRA+) for evaluating reliability of passive systems. This methodology is an improved version of the existing APSRA methodology. The methodology has been applied to the passive isolation condenser system (ICS) of the AHWR (Advanced Heavy Water Reactor). With the help of the APSRA+ methodology, the probability of the passive ICS failing to maintain the clad temperature under 400°C is estimated to be of the order 1×10−10.
Important features of APSRA+ are the following. First, it provides an integrated dynamic reliability method for the consistent treatment of dynamic failure characteristics such as multistate failure, fault increment, and time-dependent failure rate of components of passive systems. Second, this methodology overcomes the issue of process parameter treatment by just the probability density function or by root cause analysis, by segregating the parameters into dependent and independent process parameters and then giving a proper treatment to each of them separately. Third, the methodology treats the model uncertainties and independent process parameter variations in a consistent manner.
In APSRA+, the important parameters affecting the passive system under consideration are identified using sensitivity analysis. To evaluate the system performance, a best-estimate system code is used with due consideration of the uncertainties in empirical models. A failure surface is generated by varying all the identified important parameters; variation from the nominal values of these parameters affects the system performance significantly. These parameters are then segregated into dependent and independent categories. For dependent parameters, it is attributed that the variations of process parameters are mainly due to malfunction of mechanical components or control systems, and hence, root cause analysis is performed. The probability of these dependent parameter variations is estimated using a dynamic reliability methodology based on Monte Carlo simulation. The dynamic failure characteristics of the identified causal component/system are accounted for in calculating these probabilities. For the treatment of independent process parameters, using APSRA+ suggests adopting and integrating classical data-fitting techniques or mathematical models. In the next steps, a response surface-based metamodel is formulated using the generated failure points. The probability of the system being in the failure zone is estimated by sampling and analyzing a sufficiently large number of samples for all the dependent and independent process parameters based on the probability of variations of these parameters, which were estimated using dynamic reliability methodology.