ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Lucas P. Tucker, Shoaib Usman, Ayodeji Alajo
Nuclear Technology | Volume 194 | Number 1 | April 2016 | Pages 97-110
Technical Paper | doi.org/10.13182/NT15-67
Articles are hosted by Taylor and Francis Online.
The Missouri University of Science and Technology Subcritical Assembly has been brought back into service and upgraded with a new neutron detection system and Internet accessibility. Before the upgrade, neutron counting was possible in only one location. Using a movable detection system housed in acrylic tubes, measurements can now be taken in any empty fuel location and at any height within the tube, making three-dimensional flux mapping possible. By connecting the new detection system to a Canberra Lynx Digital Signal Analyzer, remote users can have limited data-collecting capabilities. To further enhance the potential of the facility, a Monte Carlo N-Particle transport code (MCNP) model of the subcritical assembly was created and validated by comparing its simulated predictions to experiments conducted at the facility. An approach to the criticality experiment using the 1/M approximation showed that the MCNP model accurately predicts keff if the detectors are placed between 27 and 36 cm from the neutron source. The results of an axial flux measurement experiment taken 20.3 cm from the neutron source differed from the MCNP-simulated results by an average of 12%. Finally, the validated MCNP model was used to show the effect of removing the facility’s fixed detector tube and redistributing its fuel. MCNP simulation predicts that the new configuration would increase the multiplication factor from 0.73481 ± 0.00008 to 0.76844 ± 0.00004.