ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
Haihua Zhao, Per F. Peterson
Nuclear Technology | Volume 158 | Number 2 | May 2007 | Pages 145-157
Technical Paper | Nuclear Reactor Thermal Hydraulics | doi.org/10.13182/NT07-A3832
Articles are hosted by Taylor and Francis Online.
This paper presents an overview and a few point designs for multiple-reheat Brayton cycle power conversion systems (PCSs) using heat from high-temperature molten salts or liquid metals. All designs are derived from the General Atomics gas turbine-modular helium reactor (GT-MHR) power conversion unit (PCU). Analysis shows that, with relatively small engineering modifications, multiple GT-MHR PCUs can be connected together to create a PCS in the >1000 MW(electric) class. The resulting PCS is quite compact, and results in what is likely the minimum gas duct volume possible for a multiple-reheat system. To realize this, compact plate type liquid-to-gas heat exchangers (power densities from 10 to 120 MW/m3) are needed. Different fluids such as helium, nitrogen and helium mixture, and supercritical CO2 are compared for these multiple-reheat Brayton cycles. For turbine inlet temperatures of 900, 750, and 675°C, the net thermal efficiencies for helium cycles are 56, 51, and 48%, respectively, and corresponding PCU power densities are 560, 490, and 460 kW(electric)/m3, respectively. The very high PCU power densities could imply a large material saving and low construction cost, and bring down the specific PCU cost to about half that of the current GT-MHR PCS design.