ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
Soo-Yong Park, Young-Ho Jin, Yong-Mann Song
Nuclear Technology | Volume 158 | Number 1 | April 2007 | Pages 109-115
Technical Note | Thermal Hydraulics | doi.org/10.13182/NT07-A3829
Articles are hosted by Taylor and Francis Online.
An external reactor vessel cooling as a means for an in-vessel retention has been selected as one of the tentative severe accident management strategies for the Wolsong plants, which are typical CANDU 6 reactors. The strategy takes advantage of the plant-specific features: (a) the power density is low, (b) the calandria vessel and the calandria vault have large water volumes, (c) the calandria is always submerged in the water of the calandria vault during a normal operation, (d) the stainless steel layer of the molten corium is negligible even though the unoxidized Zircaloy could form a metal layer, (e) no insulation structure is designed around the calandria vessel, (f) the bottom area of the calandria is large enough to transfer a sufficient amount of the corium decay heat into the calandria vault water, and (g) the water supply from the backup water sources into the calandria vault is available for a long-term external cooling of the calandria. The above design features cause a severe accident progression to be considerably delayed, and they minimize the in-vessel retention issues applied to a certain pressurized light water reactor. Furthermore, the thermal analysis demonstrates that the molten corium on the bottom of the calandria is externally coolable in terms of the critical heat flux, although phenomenological uncertainties still exist. This paper shows the feasibility and the evaluation results of the in-vessel retention strategy via an external vessel cooling for the CANDU 6-type plants, which have not been addressed as yet.